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Abstract
Motivated by short-range Ising spin glasses, we review some rigorous results and their
consequences for the relation between the number/nature of equilibrium pure states and
nonequilibrium dynamics. Two of the consequences for spin glass dynamics following an
instantaneous deep quench to a temperature with broken spin flip symmetry are: (1) almost all
initial configurations lie on the boundary between the basins of attraction of multiple pure
states; (2) unless there are uncountably many pure states with almost all pairs having zero
overlap, there can be no equilibration to a pure state as time t → ∞. We discuss the relevance
of these results to the difficulty of equilibration of spin glasses. We also review some results
concerning the ‘nature versus nurture’ problem of whether the large-t behavior of both
ferromagnets and spin glasses following a deep quench is determined more by the initial
configuration (nature) or by the dynamics realization (nurture).

1. Introduction

Experimental signatures of laboratory spin glasses—irreversi-
bility, history dependence, ageing—demonstrate that these
systems are out of equilibrium during the timescale of most, if
not all, experimental measurements [1–20]. This puts us in the
unusual position of attempting to explain the nonequilibrium
dynamics of a system whose equilibrium statistical mechanics
have yet to be worked out, or even understood on the most basic
qualitative level. We still do not know, for example, whether
there exists a true equilibrium phase transition to a spin glass
phase in any dimension in the usual short-range models that are
believed to describe laboratory spin glasses (many of which
are not short range at all. This leads to the question of how
well short-range models do in fact represent them—but since
none of the models are at all understood, that question remains
moot for now). Supposing that there is a phase transition in
short-range models, we do not know their low-temperature
properties, such as pure state multiplicity and structure. We do
not even know what their zero-temperature (i.e., ground state)
properties look like. (It would be an overstatement, however,
to say we do not know anything. Numerical work has provided
some valuable insight [21–35], there exist several competing
pictures for the spin glass phase [36–45], and rigorous and

nonrigorous work of the authors has effectively ruled out some
scenarios [46]. But we clearly still have a long way to go.)

This lack of progress is partly responsible for the
viewpoint advocated by some that the only physics of
spin glasses really worth looking at is their nonequilibrium
dynamics. Although this seems to us a bit premature given
that we do not really know what the equilibrium properties
look like, there is no question that even if we did have a better
picture of the equilibrium thermodynamics, we could still be a
long way from explaining the many experimental observations
of spin glass behavior.

Related to this, but not quite the same, is the prevalent
viewpoint that the nonequilibrium dynamics of spin glasses
(or any system with many competing thermodynamic phases)
is sharply separated from their equilibrium behavior, in
particular, their possessing many pure states. (A related
issue is the distinction between static and dynamic phase
transitions—see, e.g., [47] where this is studied for spherical
p-spin spin glasses.) The actual presence of many pure states
may or may not exist in real spin glasses, but the possibility
has created substantial excitement about these systems and
spurred numerous theoretical and numerical investigations.
The basic idea behind this viewpoint lies in the dynamical
invariance of pure states. That is, dynamics takes a spin
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configuration belonging to a pure state to another in the same
pure state, but never to a configuration in a different pure state;
equivalently, pure states are valleys separated by dynamically
insurmountable barriers. It therefore seems initially reasonable
to conclude that the number of equilibrium pure states is
dynamically irrelevant: since dynamics always occurs within a
single pure state, no matter how long the timescale, knowledge
of the equilibrium pure state structure does not tell one very
much about the nonequilibrium dynamics.

The main point of this paper is to convince the reader
that this idea is incorrect, and that the two (equilibrium
structure and nonequilibrium dynamics) are in fact very much
interrelated. Of course, the context in which an experiment
is done is crucial in any statement of this kind. To support
the above claim, we will review earlier papers of the authors,
and discuss some mathematically rigorous theorems there that
demonstrate a deep interconnection between equilibrium pure
state structure and nonequilibrium dynamics in one of the
farthest-from-equilibrium situations that has been studied: a
sudden (in fact, instantaneous) quench from very high to low
temperature. As we proceed, we will show along the way that a
number of other widely held beliefs break down in this much-
studied situation. One of these is the common assumption that
the union of the basins of attraction of all of the pure states fills
up most of the available state space, and that the boundaries
between the pure states are lower dimensional and thereby
form a set of measure zero in the set of all spin configurations
(in fact, the opposite will turn out to be true). Another is
that if many pure states are present in an infinite system, time
averages do not agree with Boltzmann averages (in principle
and perhaps even in practice, they can agree).

Our approach is general, and covers both ordered and
disordered, Ising and non-Ising systems, although we will
usually focus our attention on nearest-neighbor Ising spin
glasses for specificity. We make no a priori assumptions about
the real-space or state-space structure of the low-temperature
spin glass phase, but instead derive several general principles
and then explore their consequences.

We emphasize that our discussion centers on pure states,
not metastable states. Crudely put, metastable states are
surrounded by barriers that remain of O(1) irrespective of
the size of the system, while pure states are surrounded by
barriers that diverge in the thermodynamic limit. (More
precise definitions can be found in [46], but in this paper
we sacrifice some mathematical precision for readability.)
Metastable states are often proposed as responsible for the
anomalous dynamical behavior of spin glasses. While we
have no argument with this, we question the usefulness of the
usual practice of inserting metastability by hand, requiring a
guess as to the structure (usually in state space) and nature
of the metastable states. (In fact, much of this structure
can be determined ab initio—e.g., a rigorous discussion of
metastability in spin glasses and disordered systems can be
found in [48].)

To keep the paper reader-friendly, we will present
theorems without their proofs, which can be found in the cited
references.

2. Pure states, dynamics, and equilibration

Although the preceding discussion uses familiar terms and
notions, their actual meanings require some work to pin down.
For example, what does equilibration following a deep quench
mean in an infinite system? Can it occur on any finite
timescale? What does it mean for a system to evolve, or settle
into, or even to ‘spend all its time inside,’ a single pure state?
In order to proceed, we need to clarify these notions.

For specificity, we will mostly, but not exclusively,
consider the Edwards–Anderson (EA) Ising spin glass [49] in
zero external magnetic field. Its Hamiltonian is given by:

HJ = −
∑

〈xy〉
Jxyσxσy, (1)

where the sites x, y ∈ Zd and the sum is taken over nearest
neighbors only. The couplings Jxy are independent random
variables, whose common probability density is symmetric
about zero; we let J denote a particular realization of the
couplings.

We next need to specify the dynamics. We are interested
in the experimental situation in which a spin glass dynamically
evolves following a deep quench. We model this as the quench
of an infinite system governed by the Hamiltonian (1) from
infinite to low temperature. This is done by first choosing
the initial (time t = 0) spin configuration σ 0 from the
infinite temperature ensemble where the individual spins are
independent random variables equally likely to be +1 or −1.
We then use the usual Glauber dynamics, which is easiest
to describe at zero temperature; there, flips that are energy
lowering occur with probability 1, flips that are energy neutral
(neither lowering nor raising the energy) occur with probability
1/2, and flips that are energy raising occur with probability 0.
The exact choice of spin flip rates plays no role in our analysis
as long as detailed balance is satisfied, so we may take the
rate of considering flips to be 1. At nonzero temperature any
dynamical rule consistent with detailed balance can be used,
such as the usual Metropolis, or alternatively, the heat bath
dynamics.

At any temperature T , we denote by ω a given realization
of the dynamics (i.e., of the order in which spins are chosen to
determine whether they flip according to the dynamical rules,
combined with the outcome of each of these trials). Any ω

can be regarded as a collection of random times (tx,i : x ∈
Zd, i = 1, 2, . . .), each specifying when a spin flip at site x
is considered (forming a Poisson process in time for each x)
along with random numbers ux,i that determine if the flip is
taken.

So there are three sources of randomness in the problem:
the couplings, the initial spin configuration, and the dynamics.
Specific realizations for any given dynamical run are denoted
respectively by J , σ 0, and ω. All three are needed to determine
σ t , the spin configuration at time t . We always take J to
be fixed during any single run, to correspond to experimental
situations on laboratory timescales.
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2.1. Equilibrium states

Consider now a finite volume �L , say a cube, of linear size L
(which may be arbitrarily large) centered at the origin. For a
given boundary condition (b.c.), the equilibrium finite volume
Boltzmann distribution is given at temperature T by

ρ
(L)

J ,T (σ ) = Z−1
J ,L ,T exp{−HJ ,L (σ )/kBT }, (2)

where the finite volume spin configurations σ are restricted to
those obeying the b.c. and the partition function ZJ ,L ,T is such
that the sum of ρ

(L)
J ,T over all spin configurations in �L yields

one.
The quantity ρ

(L)
J ,T (σ ) is of course simply a probability

measure: it describes at fixed T the probability of a given spin
configuration σ (L) obeying the specified boundary condition
appearing within �L . One is also interested in infinite volume
measures ρ = ρJ ,T (σ ) that specify the probability of any
spin configuration appearing within �L ′ , for every L ′; we
call such a ρ a Gibbs state. The infinite volume limit of any
convergent sequence of ρ

(L)
J ,T (σ )’s with any set of b.c.’s (which

can vary with L) specifies a Gibbs state; one or many Gibbs
states may exist, depending on the system, temperature, and
dimension. (The assertion sometimes made that such infinite
volume quantities may not exist or make sense for spin glasses
is incorrect: it is easily shown that they do exist and that they
govern the equilibrium behavior of spin glasses; we just do not
happen to know what they look like.) Gibbs states may be pure
or mixed; see section 4.1 of [46] for definitions and a detailed
discussion. (The term ‘pure state’ used throughout this paper
refers to these pure equilibrium states.)

2.2. Dynamical states

To discuss the questions asked at the beginning of this section
in a meaningful way, we also need to specify a dynamical
probability measure with which Gibbs states can be compared.
Consider then the infinite volume spin configuration σ t at
time t > 0. As already mentioned, σ t , a dynamical
Markov process, depends on J , σ 0, and ω, but for ease of
notation this dependence will be suppressed. We define the
dynamical probability measure νt (σ ) as the distribution of
σ t over the dynamics ω for fixed J and σ 0. That is, νt

tells us the probability for each L of finding a particular spin
configuration σ (L) within �L at time t for a given J and
starting configuration σ 0. We will also sometimes consider a
measure νt,τ which is the distribution of σ t over that part of the
dynamics between times t–τ and t , so that νt,τ depends on J ,
σ 0 and ω (before time t − τ ).

Because detailed balance is satisfied by the dynamics, we
expect that after a sufficiently long time t , the probability
assigned by the dynamical measure νt (σ ) (or by νt,τ with
both t and τ large) to a given spin configuration σ (L) within
�L will approach that assigned to that same configuration
by some Gibbs state ρJ ,T , and that this will be true for
any L and σ (L) (of course, how long one has to wait
before this occurs will depend on L). Although this may
be surprising at first, especially in light of assertions that
equilibrium states are of little relevance for the nonequilibrium

dynamics of infinite systems, it is to be expected if the
common conjecture holds for Glauber dynamics (even in
infinite volume) that at positive temperature only Gibbs states
(where the probability of appearance of spin configurations are
given by the Boltzmann distribution) are stationary. Note that
the ρJ ,T in this discussion need not be a pure state.

2.3. Equilibration and non-equilibration

Now we can address the question of what it means for the
system to evolve into (or within) a specific pure state. Since
this involves some sort of equilibration, we need to address first
the broader question of what equilibration means in an infinite
system. This has been subject to various interpretations. A
common viewpoint [50] is that infinite systems (following a
deep quench, say) never reach equilibrium in any finite time;
for example, in the homogeneous ferromagnet domains of
positive and negative magnetization increase with time but are
never infinite on any finite timescale. This is of course true, but
we do not find it to be a useful way of looking at equilibration
considering that equilibrium states are really a local concept
(see, e.g., [51]).

Instead, we propose the following [52]: if for any finite
region �L there exists a time t∗

L < ∞ after which the
distribution νt (or νt,τ ), restricted to �L , is (approximately)
the same as some pure state α, then we say that the system
has equilibrated in finite time. (It does not matter that the
equilibration time depends on the region size.) So, in the
case of the ferromagnet, our definition implies that an infinite
ferromagnet equilibrates if, for any region of any size, domain
walls (between positive and negative magnetization) cease to
move across the region after some finite time (depending on
the region).

Is this definition trivial? No, because it may be that such
‘local equilibration’ does not occur. As a specific example,
it does not occur for 2D ferromagnets at low T ; it can be
rigorously proved that, following a deep quench, for any finite
region, domain walls continually sweep across it (presumably
at increasingly widely spaced time intervals) for all time [53].
(We do not know for sure what happens above two dimensions,
but we conjecture, based on numerical work of Stauffer [54],
that this ‘local non-equilibration’ holds for the homogeneous
ferromagnet up to four dimensions while at five dimensions
and above local equilibration occurs.)

We will discuss local non-equilibration and its conse-
quences more in section 4. For now, however, we return to
the question of pure states. If local equilibration has occurred
and the dynamical distribution νt (or νt,τ ) has approached a
pure state α, then the system has settled into that pure state.
In that case the entire (infinite) system settles into α; it cannot
be that different regions have settled into different pure states
(e.g., the positive and negative magnetization states in the ho-
mogeneous ferromagnet). But if local equilibration does not
occur, it should still be true that (after some finite time depend-
ing on the region) any finite region will approximate a pure
state (in the sense described above) at most times (the excep-
tional times being when a domain wall between different pure
states sweeps across the region). The details behind this asser-
tion can be found in section 2 of [52].
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In the case of local equilibration, the pure state α that
the region �L has settled into at time t should depend on J ,
σ 0, and ω. It is for that reason the theorem discussed in the
next section comes as a surprise, and has some far-reaching
consequences.

3. Basins of attraction of pure states form a set of
measure zero

We have seen that the problem of equilibration at positive
temperature boils down to the question of whether, on every
fixed (and arbitrarily large) length scale L the dynamical
measure νt (more precisely νt,τ for some τ (t) → ∞
with t) settles down to a pure state Gibbs measure ρα that
is independent of time (after a timescale depending on L).
Even if this does not occur, at most times larger than some
t∗
L , the dynamical measure νt (more precisely νt,τ (t)) will

approximate a pure state α(t); in this case, at presumably
widely spaced times a domain wall (here to be thought of as
the boundary separating two distinct pure states) sweeps across
�L , changing the pure state seen within the volume. Even so,
if one simply chooses a fixed, arbitrary time much larger than
t∗
L , with high probability the finite volume �L will be found

inside some thermodynamic pure state.
This naturally raises the question: how does the

system evolve, and what determines its long-time dynamical
evolution? A standard viewpoint is that the system should
evolve into some pure state, depending on initial conditions,
within which it remains forever after. How might this happen?
Perhaps some part of the system finds a pure state before other
parts (because it was fortuitously close to one to begin with),
and this region then grows so that eventually any part of the
system can be found in that same pure state. If other parts
of the system fall into different pure states, then upon their
boundaries meeting one such state, perhaps the one in the larger
volume, would presumably ‘win’.

Of course, if there is only one pure state governing the
equilibrium thermodynamics (such as, e.g., the paramagnetic
state in the uniform ferromagnet above Tc), then a simple
version of something like this happens, and the system does
settle into that pure state. However, if there is more than one
pure state, whether two, ten, or an infinite number, then the
scenario described above never happens for νt . This claim
follows from the following theorem:

Theorem 1 ([52]). Given some J and T > 0, assume that for
almost every σ 0, νt converges to a limiting pure Gibbs state
ν∞ as t → ∞. Then ν∞ is the same pure state for almost
every σ 0.

The proof of theorem 1 is fairly short and appears in [52].
Here we are concerned only with its consequences. The
theorem applies regardless of whether the system’s equilibrium
thermodynamics is governed by a single pure state (in which
case the conclusion is trivial), or many.

In the latter case, of course we expect that the dynamical
outcome should depend on the starting configuration. There
are three possible ways to resolve this apparent contradiction:

(1) ν∞ is not a Gibbs state. This would violate the expected
T > 0 behavior discussed in section 2 and hence we
discard this possibility.

(2) ν∞ is a mixed Gibbs state (which may or may not depend
on σ 0).

(3) νt does not converge (to a single limit) as t → ∞.

Let us consider the second and third possibilities in more
detail. Possibility (2) implies that at (suitably large) time t , the
dynamical measure νt,τ (t) is approximately a pure state ρα(t),
but that pure state depends not only on σ 0 (as expected) but
also on ω (i.e., the dynamical realization between times 0 and
t − τ ). So, while the system might ‘land’ in a pure state in the
sense that α(t) converges to some α(σ 0, ω), the limiting pure
state is almost never determined solely by σ 0.

But this has a strong consequence for the geometry of the
state-space structure. The basin of attraction of a pure state ᾱ is
the set of configurations σ 0 such that α(σ 0, ω) = ᾱ for almost
every ω (see [55] for related discussions). The only way to
avoid the consequences of theorem 1 is for its requirements to
be invalid. Thus, as an important extension of theorem 1, we
conclude that if many pure states exist, then the union of all
their basins of attraction must form a set of measure zero in
the space of σ 0’s; i.e., the configuration space resulting from
a deep quench is all ‘boundary’ in the sense that almost every
initial configuration could land in one of several (or many) pure
states depending on the realization of the dynamics (if it lands
at all).

This result is perhaps counterintuitive. In section 1,
it was noted that the context in which an experiment is
done is crucial to the interpretation of statements relating
equilibrium thermodynamic structure to nonequilibrium
dynamical behavior. This example provides an important
illustration of this. Because the quench is from a very
high (formally, infinite) to a low temperature, the relevant
configuration space that the system must explore (at least
for small time t) is effectively the one prevailing at high
temperatures. However, the pure state basins that the system
evolves to are those relevant to the (low) temperature that
determines the dynamical rules. Looked at in this way,
it may not seem quite so strange (in fact, it seems quite
natural) that the pure states form a set of measure zero in
the configuration space. But then this also illustrates that any
statements relating or contrasting equilibrium thermodynamics
with nonequilibrium dynamics cannot in general be made
independently of the dynamical process under consideration.

We note finally that theorem 1 may be relevant to damage
spreading [56–58], where one asks whether the damage (i.e.,
discrepancy) between σ t and σ ′ t (with a single ω) grows as
t → ∞. Theorem 1 suggests that if damage spreading occurs,
then νt does not converge to a single pure state (e.g., it might
converge to a mixed state, as above).

4. Effect of pure states on nonequilibrium dynamics

Before discussing possibility (3), let us consider the physical
picture implied by theorem 1. Roughly speaking, some time
after an initial quench the system will form domains, whose
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average size increases with time, corresponding to the different
pure states. This scenario has been analyzed for the two-state
droplet picture [41, 4, 59]. It is also a well-known scenario for
coarsening in a ferromagnet following a deep quench [50]. (Of
course, in contrast to the spin glass case, one does know how to
prepare a ferromagnet in a pure state; for a general discussion,
see [60].)

But if possibility (3) holds, then even after a region has
settled into a pure state, it remains ‘alive’ dynamically: the
pure state in that region will eventually change. In section 2.3,
we defined system equilibration after a finite time in terms
of local equilibration: for any region �L , there exists a
time tL after which domain walls cease to move across the
region. Possibility (3) would then correspond [52] to local
non-equilibration (LNE) on any finite length scale. (We note
that possibility (2) could occur either with local equilibration
or non-equilibration.)

So LNE means that in any fixed finite region, the system
never settles down into a pure state. Domain walls do not
simply move farther from the region as time progresses, but
continually return and sweep across it, changing the state
within. If LNE occurs in the spin glass, it would force us
to revise the usual dynamical definition [1] of the EA order
parameter. It could also mean that, for infinite systems, time
averages and Gibbs averages could agree, despite the presence
of many pure states.

We will return to this in section 6 after investigating LNE
in more detail by means of the next theorem, which applies
to both homogeneous and disordered systems and ties together
equilibrium pure state structure with nonequilibrium dynamics.

Theorem 2 ([52]). Let N be the number of pure states in the
EA model for fixed T and d, and suppose that T and d are such
that all pure states have nonzero EA order parameter (implying
that N , which is the same for almost every J , cannot be 1).
If N is countable (including a countable infinity), then LNE
occurs.

An immediate consequence of theorem 2 is that if LNE
does not occur (and the limiting pure states have nonzero
qEA), then there must be an uncountable number of pure states.
Furthermore, the proof of theorem 2 (see [52]), which is based
on overlaps, shows that almost every pair of these pure states
has overlap equal to zero. This shows that, as claimed in
section 1, nonequilibrium dynamics can provide important
information on the structure of equilibrium pure states, and
vice versa.

It also suggests a dynamical test of the two-state picture:
search for LNE in the dynamical measure νt or νt,τ . If LNE
does not occur, then the two-state picture has been ruled out—
there must be an uncountable number of pure states with
almost all pairs having overlap zero (consistent with the results
of [44]). If LNE does occur then neither the two-state nor the
many-state pictures have been ruled out. (It is not very clear
how one might go about observing LNE in a spin glass, where,
unlike the ferromagnet, one does not know what a domain wall
looks like. For a discussion of how this might be accomplished,
see [52].)

Theorem 2 also implies that LNE occurs at small positive
temperature in the 2D uniform Ising ferromagnet and the

random Ising ferromagnet for d < 5. In the former case
this result was extended to zero temperature (using different
arguments) in [53]. It was also shown there that for many
systems (e.g., spin glasses and random ferromagnets where the
common distribution of the Jxy ’s is continuous) that σ t does
converge to some limit at T = 0. (There are also systems, such
as the ±J spin glass on the square lattice at T = 0, where some
spins flip only finitely many times and some spins flip infinitely
often [61].) In light of these results, we restrict the term LNE
to T > 0, since in the zero-temperature situations where σ t

converges, the limit configuration is typically only metastable
rather than a ground state and so equilibration has not really
occurred. In these systems one can define a dynamical order
parameter, related to the autocorrelation, that does not decay to
zero.

5. More about local non-equilibration

To further clarify the discussion of LNE, consider the
homogeneous ferromagnet. At positive temperature, LNE is
a phenomenon separate from the spontaneous formation of
domains of the minority phase within the majority phase. The
timescale for such a domain of size L to form about the origin
is exponential in (some power of) L. Similarly, for a finite
system of size L, the entire system will randomly flip back
and forth between the plus and minus phases on an exponential
timescale. This, however, is not LNE, which takes place on
much shorter timescales (presumably some power of L). LNE
is not due to the spontaneous formation of one phase within
another due to statistical fluctuations, but instead is due to
domain walls sweeping into the region from far away. This
contrast is even clearer at T = 0, where the spontaneous
formation of droplets described above cannot occur; but as
already discussed, in the 2D ferromagnet the phenomenon of
domain walls forever sweeping across any finite region occurs
even at zero temperature.

Since the existence of LNE for all T < Tc in the
2D Ising ferromagnet may seem surprising, we present a
possible physical mechanism which may also shed light on
LNE in general. The initial spin configuration has (with
probability one) no infinite domains. As the configuration
evolves, some domains shrink and others coalesce. So the
origin should always be contained in a finite domain, whose
size could usually be slowly decreasing, but sporadically
would have a large change either by coalescing or because
a domain wall passes through the origin and the identity of
the domain changes. As a consequence we can arrive at
the interesting situation where the mean scale of the domain
containing the origin increases with t , even though, at a
typical arbitrarily chosen time and for fixed σ 0 and ω, its size
would be decreasing. The dynamical behavior averaged over
initial configurations and dynamical realizations is relatively
straightforward, while for individual instances of both it is
typically complex.

Summarizing, LNE is primarily the result of nonequilib-
rium domain wall motion driven by mean curvature combined
with the complex domain structure resulting from the original
quench. It is also consistent with phase separation (as would
be expected from equilibrium roughening arguments).

5
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6. Dynamical versus Boltzmann averages

It was noted above that the presence of LNE might imply that
some standard assumptions regarding broken ergodicity can
fail. Suppose that LNE occurs because only a single pair of
pure states (related by a global spin flip) is present, such as
in the 2D ferromagnet below Tc. In such a case, would a
long-time average of the magnetization in a finite region give
zero? The answer is: not necessarily. It could be that, after
long times, the system has spent roughly equal amounts of
time in both states, in which case the usual time average [1]
would indeed approach zero. But it could also happen that,
after almost any long time, the system has spent significantly
more of its life in one or the other state (which itself would
change with the observational timescale). In other words (still
using the example of a two-state system), at any long time the
weights of the two states, as defined by a dynamical measure
involving a fixed ω and an average over uniformly spaced
times, could be different from 1/2, and could even change with
time (as discussed in the next section). This is analogous to an
equilibrium phenomenon discovered by Külske [62, 63]. To
get a zero average in this situation one would need to average
over a sparse sequence of increasingly separated times.

6.1. Chaotic time dependence

We noted earlier that LNE can occur in the context of either
possibility (2) (the averaged dynamical measure νt has a limit,
which is a mixed state) or (3) (νt does not converge). LNE
must occur if possibility (3) holds, but may or may not occur if
possibility (2) holds. We now explore further the distinctions
between these two cases.

There are two ways in which possibility (2) can occur.
As described earlier, for any fixed region �L the measure
νt,τ (t) can settle into a pure state for almost all σ 0 and ω, but
the pure state depends on the dynamics as well as the initial
state. But a second possibility, that has not yet been discussed,
is that νt,τ (t) never settles down to a single pure state: the
system is usually in a pure state α(t) locally, but the pure state
forever changes. Nevertheless, νt , the full average over the
dynamics, still yields a single limit. This is to be contrasted
with possibility (3), where even the fully averaged measure νt

never settles down.
Again we use the illustration of the 2D homogeneous Ising

ferromagnet to clarify these statements. Below Tc, we know
LNE occurs by theorem 2. Suppose furthermore that it occurs
through possibility (2). Then, for fixed σ 0 and at a fixed large
time, for approximately half of the dynamical realizations, a
region of fixed length scale L surrounding the origin is in the
up state (the pure state ρ+), and for most of the other half the
same region is in the down state (the pure Gibbs state ρ−),
and this one-to-one ratio remains essentially fixed after some
timescale depending on L. Then as t → ∞, νt → ρ, where
ρ is the mixed Gibbs state (1/2)ρ+ + (1/2)ρ−. Nevertheless,
in any given dynamical realization, the region (as described by
νt,τ ) never settles permanently into either ρ+ or ρ−.

By contrast, if possibility (3) occurs, then even the fully
averaged dynamical measure νt forever changes. This could
happen (again for fixed σ 0) if the random dynamics fails to

sufficiently ‘mix’ the states (in which case one has, given σ 0,
some amount of predictive power for determining from σ 0 the
likely state of the system in the region for some arbitrarily
large times t). This is conceivable because even though σ 0

is globally unbiased between the plus and minus states, it does
have fluctuations in favor of one or the other state of order

√
L2

on length scale L; with L taken as an appropriate power of
t (L), these fluctuations could (partially) predict the sign of the
phase at the origin at time t (L). In possibility (2) on the other
hand, there is a greater capability of the random dynamics to
‘mix’ the states which eventually destroys the predictive power
contained in the fluctuations of the initial state.

So there are really two kinds of non-equilibration,
corresponding either to LNE in the framework of possibility (2)
(‘weak LNE’) or else to LNE resulting from the stronger
possibility (3). Because νt evolves deterministically according
to an appropriate master equation, its lack of a limit in
possibility (3) corresponds conceptually to the usual notion of
deterministic chaos and can thus legitimately be called chaotic
time dependence (CTD) [52, 64]. If weak LNE occurs, this
term is not appropriate because here the effect is due to the
random dynamics.

7. Nature versus nurture

The presence of two different ways the system can fail to
equilibrate—weak LNE versus CTD—leads to an interesting
issue of predictably: if weak LNE occurs, the configuration
σ t for large t is determined essentially by the dynamics, and
the initial configuration provides little predictive capability in
determining the state of any particular spin at a very large
time. If CTD occurs, on the other hand, then some predictive
power from the initial configuration remains at arbitrarily large
times. This ‘nature versus nurture’ competition provides an
interesting set of problems for future study.

Can we determine which of these possibilities occurs
for selected systems? One simple case where the extent of
predictability can be precisely determined is the 1D disordered
ferromagnet (or spin glass) with a continuous coupling
distribution (e.g., couplings chosen uniformly from [0, 1] for
the ferromagnet and from the Gaussian distribution for a spin
glass). We define (for general dimension) a dynamical order
parameter qt as [53]

qt = lim
L→∞(2L + 1)−d

∑

x∈�L

(〈σx 〉t )
2 = EJ ,σ 0(〈σy〉2

t ). (3)

In this formula, dynamical averages (i.e., with respect to the
distribution νt over dynamical realizations ω) of σ t (with fixed
J , σ 0) are denoted by 〈·〉t and y is any fixed site, e.g., the
origin; the remaining averages, over J and σ 0, are denoted
by EJ ,σ 0 . The equivalence of the two formulas for qt follows
from translation ergodicity; see [53] for details.

If the infinite time limit of qt exists, we define qD =
limt→∞ qt . The order parameter qD measures the extent
to which σ∞ is determined by σ 0 rather than by ω; it is
a dynamical analog to the usual Edwards–Anderson order
parameter. Of course, q0 = 1 because σ 0 is completely
determined by σ 0, while a value qD = 0 would mean that for

6
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every x , 〈σx 〉t → 0 so that σ 0 yields no information about
σ t as t → ∞. The following theorem provides an exact
determination of qD for the disordered 1D systems introduced
above:

Theorem 3 ([53]). For the d = 1 homogeneous ferromagnet
at zero temperature, σ∞

x does not exist (i.e., σ t
x changes

infinitely many times as t → ∞) for almost every σ 0 and ω and
every x. For the corresponding one-dimensional disordered
model (ferromagnet or spin glass) with continuous coupling
distribution, σ∞

x does exist for almost every J , σ 0, and ω and
every x; furthermore qD = 1/2.

The value qD = 1/2 is a reflection of the fact that, for
almost every J and σ 0, precisely half of the x’s in Z have σ∞

x
completely determined by σ 0 with the other σ∞

x ’s completely
undetermined by σ 0. For the homogeneous one-dimensional
ferromagnet, it is not hard to show (see, e.g., [64]) that although
σ∞ does not exist, 〈·〉∞ does exist for almost all σ 0, and that
qD = 0.

What about higher-dimensional systems? Here we mostly
need to rely on numerical studies, at least for the present.
In a recent paper [65], the homogeneous 2D ferromagnet on
a square lattice was studied at zero temperature. Numerical
results from this study suggest that CTD might hold for the
infinite lattice, in which case long-term predictability from
information contained in the initial state would be present to
some extent. We refer the interested reader to [65] for details.

8. Summary

In this review, we considered the dynamical evolution of a
short-range Ising spin glass following a deep quench (although
many of our results generalize to other systems). We presented
several theorems [52] with somewhat surprising consequences,
as follows. If the spin glass displays broken spin flip symmetry
(more precisely, has a nonzero EA order parameter), then
equilibration in any local region depends crucially not only
on the number of pure states but also their overlaps. Only
when there exists an uncountable infinity of pure states, with
almost every pair having zero overlap (i.e., the spin overlap
distribution P(q) is a δ-function at zero), can the system
equilibrate, falling into some pure state as t → ∞. However,
this is a necessary, not a sufficient condition.

A second consequence of these theorems is that the
union of the basins of attraction of all pure states (again,
if broken symmetry occurs) forms a set of measure zero in
configuration space following a deep quench: almost every
starting configuration is on a boundary between multiple pure
state basins.

This has consequences not only for deep quenches but
also for slow cooling. Once again the ferromagnet provides
an instructive example. The general applicability of our
arguments implies that the same result holds for ferromagnets
(either homogeneous or disordered) following a deep quench.
But if one cools slowly instead, then it’s easy to prepare the
system in one of the two translationally invariant pure states,
which are well understood and characterized: the positive and
negative magnetization states.

But the spin glass could present a different story
under slow cooling, even for small temperature changes.
If the chaotic temperature dependence predicted in some
theories [42, 43] occurs, then the pure state structure of a
spin glass (with fixed J ) changes chaotically on length scales
larger than some L∗(
T ) when the system undergoes a change
in temperature 
T . The dynamical effect of such a change
may then be similar to that of a deep quench. The well-
known difficulty in equilibrating spin glasses may therefore be
a consequence of this effect, with long relaxation times arising
from small domain sizes and slow (possibly due to pinning)
motion of domain walls.

More generally, we have argued against a common
viewpoint that pure state multiplicity is irrelevant to the
dynamics of infinite (or very large) systems on finite
timescales. In many situations, a system will not spend all
of its time in a single pure state, even locally. Because of
this, it is also not necessarily true that ‘absolutely broken
ergodicity’—i.e., the presence of more than one pure state
separated by infinite barriers—implies that time averages and
Boltzmann averages must disagree (or equivalently, that the
limits N → ∞ and t → ∞ cannot commute).

Finally, we discussed the effect of initial conditions on the
future spin configuration of a spin system, in the context of
its predictability: to what extent is the evolution determined
by the starting configuration, and how much depends on the
dynamics? This ‘nature versus nurture’ problem can be solved
exactly for 1D random ferromagnets and spin glasses [53], and
was studied numerically for the 2D homogeneous ferromagnet
on the square lattice [65]. The problem is equivalent to
determining whether a weak form of local non-equilibration
occurs (which favors ‘nurture’) or whether a stronger chaotic
time dependence occurs (which favors ‘nature’). Which of
these occurs for particular systems remains an open problem.
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